ADPCM是一种很简单实现的音频编码方式,真正的PCM相当占用内存,这对网络和内存的压力是相当大的,因此通常需要压缩编码,ADPCM是一种可以运行在单片机上的编码方式,原理如下:

ADPCM-vs-PCM.png

由于声音信号具有波形上的连续性,因此相邻两个采样值大小也非常接近,记录单个采样值通常需要 16bit,而记录前后两个采样点的差值(差分法),往往只需要 4bit,这便是 ADPCM 压缩编码的基本原理,因此通过 ADPCM 编码的音频文件,其大小只有 PCM 格式的四分之一。
不仅如此,ADPCM 的智能之处在于,对于变化剧烈的波形,算法通过自适应机制,能自动改变差分值的度量粒度,即使是抖动较大的信号,也可以保证前后采样差值总能用固定的 4bit 表示。在 PCM 编码的基础上增加 「差分」和「自适应」的特性,便是 ADPCM(Adaptive Differential Pulse Code Modulation 自适应差分脉冲编码调制) 名称的由来。
当然,ADPCM 算法实现简单、压缩率高的同时,必然要付出音质损失的代价 —— ADPCM 格式文件的声音听起来会略为粗糙,被同样是有损压缩的 MP3 编码吊打,不过用于提示音、人声讲话等场合还是绰绰有余。
实际上在STM32L476@80Mhz单片机上测试,编码320个16bit数据需要时间在1ms内,解码几乎不占用时间,这意味着在单片机上具有较强的实时性。

如何实现:
在网上嫖到的adpcm.c、adpcm.h
-------------------------------源文件-----------------------------------

#include "adpcm.h"
#include <stdio.h> /*DBG*/

#ifndef __STDC__
#define signed
#endif

/* Intel ADPCM step variation table */
static int indexTable[16] = {
    -1, -1, -1, -1, 2, 4, 6, 8,
    -1, -1, -1, -1, 2, 4, 6, 8,
};

static int stepsizeTable[89] = {
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};

void adpcm_coder(short *indata, signed char *outdata, int len, struct adpcm_state *state)
{
    short *inp;            /* Input buffer pointer */
    signed char *outp;        /* output buffer pointer */
    int val;            /* Current input sample value */
    int sign;            /* Current adpcm sign bit */
    int delta;            /* Current adpcm output value */
    int diff;            /* Difference between val and valprev */
    int step;            /* Stepsize */
    int valpred;        /* Predicted output value */
    int vpdiff;            /* Current change to valpred */
    int index;            /* Current step change index */
    int outputbuffer;        /* place to keep previous 4-bit value */
    int bufferstep;        /* toggle between outputbuffer/output */

    outp = (signed char *)outdata;
    inp = indata;

    valpred = state->valprev;
    index = state->index;
    step = stepsizeTable[index];

    bufferstep = 1;

    for ( ; len > 0 ; len-- ) {
    val = *inp++;

    /* Step 1 - compute difference with previous value */
    diff = val - valpred;
    sign = (diff < 0) ? 8 : 0;
    if ( sign ) diff = (-diff);

    /* Step 2 - Divide and clamp */
    /* Note:
    ** This code *approximately* computes:
    **    delta = diff*4/step;
    **    vpdiff = (delta+0.5)*step/4;
    ** but in shift step bits are dropped. The net result of this is
    ** that even if you have fast mul/div hardware you cannot put it to
    ** good use since the fixup would be too expensive.
    */
    delta = 0;
    vpdiff = (step >> 3);

    if ( diff >= step ) {
        delta = 4;
        diff -= step;
        vpdiff += step;
    }
    step >>= 1;
    if ( diff >= step  ) {
        delta |= 2;
        diff -= step;
        vpdiff += step;
    }
    step >>= 1;
    if ( diff >= step ) {
        delta |= 1;
        vpdiff += step;
    }

    /* Step 3 - Update previous value */
    if ( sign )
      valpred -= vpdiff;
    else
      valpred += vpdiff;

    /* Step 4 - Clamp previous value to 16 bits */
    if ( valpred > 32767 )
      valpred = 32767;
    else if ( valpred < -32768 )
      valpred = -32768;

    /* Step 5 - Assemble value, update index and step values */
    delta |= sign;

    index += indexTable[delta];
    if ( index < 0 ) index = 0;
    if ( index > 88 ) index = 88;
    step = stepsizeTable[index];

    /* Step 6 - Output value
    if ( bufferstep ) {
        outputbuffer = (delta << 4) & 0xf0;
    } else {
        *outp++ = (delta & 0x0f) | outputbuffer;
    }*/
    if ( bufferstep ) {
        outputbuffer = delta & 0x0f;
    } else {
        *outp++ = ((delta << 4) & 0xf0) | outputbuffer;
    }
    bufferstep = !bufferstep;
    }

    /* Output last step, if needed */
    if ( !bufferstep )
      *outp++ = outputbuffer;

    state->valprev = valpred;
    state->index = index;
}

void adpcm_decoder(signed char *indata, short *outdata, int len, struct adpcm_state *state)
{
    signed char *inp;        /* Input buffer pointer */
    short *outp;        /* output buffer pointer */
    int sign;            /* Current adpcm sign bit */
    int delta;            /* Current adpcm output value */
    int step;            /* Stepsize */
    int valpred;        /* Predicted value */
    int vpdiff;            /* Current change to valpred */
    int index;            /* Current step change index */
    int inputbuffer;        /* place to keep next 4-bit value */
    int bufferstep;        /* toggle between inputbuffer/input */

    outp = outdata;
    inp = (signed char *)indata;

    valpred = state->valprev;
    index = state->index;
    step = stepsizeTable[index];

    bufferstep = 0;

    for ( ; len > 0 ; len-- ) {

    /* Step 1 - get the delta value */
    if ( !bufferstep ) {
        inputbuffer = *inp++;
        delta = inputbuffer & 0xf;
    } else {
        delta = (inputbuffer >> 4) & 0xf;
    }
    bufferstep = !bufferstep;

    /* Step 2 - Find new index value (for later) */
    index += indexTable[delta];
    if ( index < 0 ) index = 0;
    if ( index > 88 ) index = 88;

    /* Step 3 - Separate sign and magnitude */
    sign = delta & 8;
    delta = delta & 7;

    /* Step 4 - Compute difference and new predicted value */
    /*
    ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
    ** in adpcm_coder.
    */
    vpdiff = step >> 3;
    if ( delta & 4 ) vpdiff += step;
    if ( delta & 2 ) vpdiff += step>>1;
    if ( delta & 1 ) vpdiff += step>>2;

    if ( sign )
      valpred -= vpdiff;
    else
      valpred += vpdiff;

    /* Step 5 - clamp output value */
    if ( valpred > 32767 )
      valpred = 32767;
    else if ( valpred < -32768 )
      valpred = -32768;

    /* Step 6 - Update step value */
    step = stepsizeTable[index];

    /* Step 7 - Output value */
    *outp++ = valpred;
    }

    state->valprev = valpred;
    state->index = index;
}


------------------------------------------------头文件---------------------------

#ifndef ADPCM_H
#define ADPCM_H
#include <stdint.h>

struct adpcm_state
{
    int valprev;
    int index;
};

extern void adpcm_coder(short *indata, signed char *outdata, int len, struct adpcm_state *state);
extern void adpcm_decoder(signed char *indata, short *outdata, int len, struct adpcm_state *state);

#endif /*ADPCM_H*/

HOW TO USE

ADPCM不用设定那么多参数,直接来解码编码:
创建两个编解码参数,主要是用来存储上次的数据

struct adpcm_state myENadpcm,myDEadpcm;
myENadpcm.index=0;
myENadpcm.valprev=0;

myDEadpcm.index=0;
myDEadpcm.valprev=0;

编解码函数调用:

adpcm_coder(原始数据数组, 编码后的数据数组, 编码前的数据长度, &myENadpcm);
adpcm_decoder(编码后的数据, 解码后的数据, 编码后的数据长度, &myDEadpcm);

实际测试上,在单片机上运行,相比于原声具有较强的电子音,就像是牙签的babiQ~,相对来说,OPUS的效果更好,但是资源占用也更高.